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Abstract- The cardiotocogram (CTG) is a display of the fetal
heart rate and maternal uter ine activity over time.  An
automated system for CTG analysis can be used as a decision
suppor t tool in a clinical sett ing. We present an automated
system for the identification of abnormal patterns in the
intrapar tum (labor ) CTG.  We extract discriminating features
from the CTG and then use techniques based upon the
Neuroscale algor ithm to project these features onto a two-
dimensional visualization space.  The locations of the projected
features in the visuali zation space corr elate retrospectively
with an expert’s assessment of the CTG’s pattern.
Keywords- Cardiotocogram, fetal hear t rate, fetal monitor ing,
visualization, Neuroscale, Sammon map

INTRODUCTION

Being born is the most stressful event the majority of
us will ever have to endure [1].  Although most people
survive the experience without suffering any il l effects, four
percent of the population experiences distress during birth,
sometimes resulting in permanent disabil ity or death [2].
Since the 1970s, fetal monitoring has been used in Western
hospitals to diagnose and treat fetal distress as early as
possible during labor [3].

Most fetal monitors record and display the fetal heart
rate (FHR) and maternal uterine activity (UA) over time.
Together, these two traces constitute the cardiotocogram
(CTG), a 15-minute example of which is shown in Fig. 1.
To discriminate between a healthy and distressed fetus,
clinicians visually analyze the CTG, searching for features
that indicate a decline in fetal health.

Clinicians make subjective decisions about the health
of a fetus based upon visual analysis of the CTG.  As the
patterns of CTGs can vary greatly, the abil ity to make such
decisions relies upon intuition and experience. Visual
analysis of the CTG has not been shown to improve long-
term outcome in low-risk pregnancy, most likely due to
inaccurate and inconsistent interpretation [4].

An automated system for CTG analysis could
eliminate  the   inconsistency  of   visual  analysis.    Several

Fig. 1. A typical cardiotocogram (CTG) consists of the fetal heart rate
(FHR) and uterine activity (UA) over time. See text for explanation.

groups have proposed such systems [3,4,5,6].  Some
systems do succeed at automated antenatal analysis (before
labor) [6].  Yet, all systems show some diff iculty in
discriminating accurately and robustly between “normal”
and “abnormal” patterns of an intrapartum (labor) CTG.

In this paper, we propose an automated system for the
analysis of the intrapartum CTG and give examples of how
the system can reproduce the experience and intuition of an
expert obstetrician.  First, we explain how our system
extracts discriminating features from a CTG.  Next, we
explain how to project these features onto a two-
dimensional visualization space.  The locations of projected
features in the visualization space correlate retrospectively
with an expert’s assessment of the CTG’s pattern.  Finall y,
we discuss how this system may be used a decision support
tool in clinical settings.

METHODOLOGY

Data Selection
The 24 CTGs analyzed in the present study were

recorded with a Hewlett-Packard 8040A fetal monitor at the
John Radcli ffe Hospital, Oxford, UK.  Twelve CTGs were
recorded from distressed fetuses who exhibited abnormal
physiological characteristics at birth1.  To balance the
database, 12 CTGs recorded from healthy fetuses who did
not exhibit these abnormal characteristics at birth were also
selected. All 24 traces were recorded from full -term fetuses
at 38-42 weeks gestation.  Furthermore, all fetuses were
first-born children.

Visual Analysis
The 24 traces were randomly shuff led.  Each trace was

segmented into non-overlapping windows approximately
half an hour in length and given to an expert obstetrician.
The expert was told the gestational age of the fetus, the
stage of labor and the time in which Stage I labor (before
pushing) turned into Stage II labor (during pushing), and the
fact that the mother had not given birth before.  No further
information was given.  Although the clinician was allowed
to look at previous windows, he was not allowed to look
ahead or see any indication of the length of the CTG.

 The expert identified visually the FHR decelerations,
accelerations, and uterine contractions in each window,
examples of which are labeled in Fig. 1 as “D”, “A”, or “C” ,
respectively.  As some decelerations and accelerations can
be caused by uterine contractions, the expert also identified

                                                       
1 Arterial and/or venous pH < 7.12, and arterial and/or venous base deficit
> 12, and 1-minute Apgar score < 4 and/or 5-minute Apgar score < 7.
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contraction-deceleration and contraction-acceleration pairs.
In addition, the expert estimated the basal heart rate value
and classified the variability as normal, reduced, or
increased for each window.  Finally, the expert judged the
overall pattern of the CTG within the window as “normal” ,
“suspicious” , or “abnormal”.

Automated Analysis -- Feature Extraction
The 24 CTGs included in the visual analysis were also

analyzed with the automated system.   In the first stage of
the system, discriminatory features are extracted from the
CTG.  First, the system estimates the FHR baseline using
morphological filters.  The baseline is the mean FHR with
accelerations and decelerations excluded [7].  The filters use
constant-valued or “ flat” structuring elements to remove
features of the FHR that are not “ flat” , i.e. the decelerations
and accelerations.  The lengths of the structuring elements
are chosen to be the most common durations of
decelerations and accelerations identified in the visual
analysis [8].

Next, the system identifies decelerations and
accelerations with respect to the estimated baseline.  Of all
deviations below baseline, the system identifies as
decelerations those whose amplitudes and durations are
within certain threshold limits.  These thresholds are chosen
to include all but the smallest and largest 10 percents of
deceleration amplitudes or durations identified in the visual
analysis.  (The largest 10 percent are assumed to be
artifacts.)  Similarly, the system identifies as accelerations
those deviations above baseline whose amplitudes and
durations are within threshold limits.

As all UA traces in the present study were recorded
with a tocodynamometer, a pressure transducer strapped
externally to the mother’s abdomen, the UA “baseline” can
drift up or down, masking the true, unstressed pressure of
the uterus.  Therefore, the amplitudes and durations of
uterine contractions cannot be measured accurately and it is
not possible to identify uterine contractions in the same
manner as is done with FHR decelerations and
accelerations.   Instead, the system uses a morphological
filter to estimate the drifting UA “baseline” and then
subtracts this “baseline” from the UA.   Next, the system
smoothes the UA and calculates dUA/dt.  The times at
which dUA/dt deviates from and returns to zero are taken to
be the beginning and ending times of uterine contractions,
respectively.

Once the FHR baseline, decelerations, accelerations,
and uterine contractions have been identified, the system
then extracts discriminatory features from the CTG.  The
FHR baseline is one such feature in itself.  For each
deceleration, the system calculates, with respect to the FHR
baseline, its ampli tude, area, and duration.  The system
calculates the same features for each acceleration.

As uterine contractions can cause decelerations or

accelerations, we also identify a contraction-deceleration
pair as that contraction and that deceleration whose peak
and trough values, respectively, occur within a specified
time interval. For each pair, we measure the peak-to-trough
interval and call i t the “lag time”, another discriminating
feature [9].  Similarly, we also identify contraction-
acceleration pairs and calculate acceleration lag times.
Often, however, the UA trace is of such poor quality that we
cannot identify accurately the uterine contractions.  We
employ auto-regressive modeling techniques to identify
those portions of the UA trace that are of poor signal qualit y
[10]. We calculate deceleration and acceleration lag times
only when the UA signal quality is adequate.

We then segment the FHR into windows 10 minutes in
duration, overlapping by five minutes.  For each window,
we calculate two feature vectors.  The first vector holds five
features, the median values of the FHR baseline and
deceleration amplitudes, areas, durations, and lag times.
The second vector also holds five features, the median
values of the FHR baseline and acceleration amplitudes,
areas, durations, and lag times.  Every five minutes, two
new five-dimensional feature vectors are calculated.  These
vectors are the inputs for the second stage of the automated
system.

Automated Analysis -- Visualization of Features
In the second stage of the system, we analyze

separately the deceleration and accelerations feature vectors.
We project each five-dimensional feature vector onto a two-
dimensional visualization space using the Neuroscale
algorithm for Sammon’s mapping [11].

Sammon’s mapping is a well -known scaling technique
used to visualize high-dimensional data [12].  For p high-
dimensional feature vectors, x1,…, xp, we seek p projections,
y1,…, yp, for those feature vectors in a two-dimensional
visualization space such that the p(p-1)/2 distances di j

between the two-dimensional projections are as close as
possible to the corresponding distances 

�
ij between the high-

dimensional feature vectors.  Neuroscale is an algorithm
developed recently for parameterizing the mapping with a
radial basis function (RBF) neural network [11].

When using the Neuroscale algorithm with large
amounts of data, the visualization space should be defined
using the K-means algorithm to pre-cluster the high-
dimensional feature vectors [13]. K-means clustering
reduces the number of feature vectors fed as inputs to the
RBF. This step is essential, as it reduces the number of pairs
of patterns over which the errors ||dij - 

�
ij||

2 must be
minimized.

We use the Neuroscale algorithm to explore our data
in two different ways.  First, we normalize each feature in
the feature vectors to zero mean, unit variance across all 24
CTGs and train the RBF network with the normalized
feature vectors.  Based upon the learned mapping from five
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to two dimensions, we project the normalized feature
vectors from all CTGs onto the visualization space.    We
compare the locations of the projected vectors to the
experts’ assessment of the CTGs’ patterns.

Second, we project the normalized feature vectors
from each CTG onto the visualization space individually.
We compare the final pattern of an individual CTG to its
initial pattern by observing the trajectory of its projections
through visualization space.

RESULTS

Fig. 2 shows the deceleration vectors from all 24
CTGs projected onto the two-dimensional visualization
space.  The features were calculated from decelerations
identified by the expert in the visual analysis.  We use post-
visualization coloring in Fig. 2 to relate the locations of the
projections in visualization space to the expert’s assessment
of the CTGs’ patterns.  This information about the three
classes of patterns, “normal”, “suspicious” , and “abnormal”,
is not used when projecting the vectors onto the
visualization space, as the mapping from five to two
dimensions is learned with unlabelled data (unsupervised
learning).  Instead, the expert labels are used to color the
vectors after the mapping has been learned.

Fig. 2 shows that the clustering of the deceleration
vectors in visualization space matches the expert’s
assessment of the CTGs’ patterns.  While “normal” vectors
cluster mostly in the upper, left quadrant of the space,
“abnormal” vectors cluster mostly in the lower, right
quadrant.  There is a spread of  “suspicious” vectors
between the two regions.

 Fig. 3-5 show the trajectories of the projections
through visualization space for three different labors.  Black
dots mark the projections of the clusters of feature vectors
identified with the K-means algorithm (same visualization
space as in Fig. 2).  Circles and asterisks mark the first and
last projections with respect to time.  Fig. 3 shows the
trajectory from a  CTG whose pattern  was  assessed  by  the

Fig. 2.  Projections of 5-dim deceleration vectors onto the 2-dim
visualization space.  The locations of the projected vectors correlate
retrospectively with the expert’ s assessment of the CTGs’ patterns:

O = Normal, �  = Suspicious, + = Abnormal.

 expert as  “normal” or occasionally “suspicious”
throughout  labor.  The trajectory remains in the upper, left
quadrant of the visualization space. In contrast, Fig. 4 shows
the trajectory from a CTG whose pattern was assessed by an
expert to be “suspicious” or “abnormal” throughout labor.
The trajectory remains in the lower, right quadrant or
“abnormal” region of visualization space.  Fig. 5 shows the
trajectory from a CTG whose pattern was assessed by an
expert as increasingly abnormal over the course of labor.
The trajectory begins in the “normal” region of the
visualization space but heads towards the “abnormal” region
as labor proceeds.

Fig. 3. The trajectory through visualization space for a CTG
whose pattern remained mostly “normal” throughout labor.

Fig. 4. The trajectory through visualization space for a CTG
whose pattern remained mostly “abnormal” throughout labor.

Fig. 5. The trajectory through visualization space of a CTG
whose pattern was initial ly “normal” but later became “abnormal” .
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DISCUSSION

Our system can track the pattern of a CTG over time
by extracting feature vectors from overlapping windows of a
CTG and then projecting these vectors onto a two-
dimensional visualization space with the use of an RBF
network to construct the mapping.

The outputs of the RBF are initialized to be the
projections of the normalized feature vectors onto their two
principal components.  As this is a linear projection, we can
determine to what degree each feature contributes to the
location of the projection by investigating the eigenvalues
and eigenvectors of the features’ covariance matrix.  For the
deceleration vectors, the first principal component is
influenced most by the variation in baseline values.  The
second principal component is influenced by the variations
in deceleration amplitude, area, and duration values.

The visualization space of the initialized RBF thus
consists of one axis corresponding mostly to the baseline
and a second, orthogonal axis corresponding to a linear
combination of deceleration features.   We assume that the
visualization space of the trained RBF is similar, as the
optimization of the mapping converges after only eight
iterations.  These eight iterations are needed, however, to
stretch the visualization space optimally.  A similar
argument can be made for the visualization space of the
trained RBF for acceleration features.

A CTG with a high baseline and large deceleration
features (features considered “abnormal” by clinicians)
projects onto the lower, right quadrant of the visualization
space. These projections cluster in the region of
visualization space retrospectively colored as “abnormal” in
Fig. 2 using the expert’s labels. In contrast, a lower baseline
with smaller deceleration features projects onto the upper,
left quadrant of the visualization space, the region
retrospectively labeled as “normal” in Fig. 2.

Fig. 3 - 5 show that changes in a CTG can be tracked
with respect to the CTGs used in the training of the RBF.  A
CTG whose pattern changes from “normal” to “abnormal”
over time wil l exhibit feature vectors whose projections
move from the “normal” to “abnormal” regions of the
visualization space.

A small number of  “normal” vectors do project into
the “abnormal” region of the visualization space and vice
versa, as is shown in Fig. 2.  We must note, however, that
these projections are calculated from deceleration features
only.  We may be able to remove these errors by identifying
artifacts and/or using other discriminating features, such as
those corresponding to FHR accelerations or variability.

We must also note that the system merely tracks the
pattern of the CTG, rather than predicts the health of the
baby after birth.  A CTG with an abnormal pattern may
prompt clinicians to intervene during labor, performing an

emergency Cesarean section or using other deli very aids,
such as forceps.  The intervention itself can improve the
health of the fetus, resulting in a healthy newborn baby.
The best an automated system can do, then, is to assess the
CTG’s pattern.  The clinician can take into account this
automated assessment when making decisions regarding the
management of labor.

CONCLUSION

The system described in this paper shows promise as a
decision support tool for inexperienced clinicians when an
expert is not present for consultation. The locations of the
projected feature vectors in visualization space are an
estimate of the assessment of the CTG’s pattern that an
expert would give if present.
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